Class XI (2024-25) PHYSICS

SAMPLE PAPER MARKING SCHEME

Q.No.	Hints to the Answers	Value	Total
		Point	Marks
	SECTION A	4	
1		1	1
2	d) Figures A, B and C	1	1
3	d) in all options (A, B, C and D)	1	1
4	d) $r_4^2 = 3.0 \text{ t} \hat{i} - 4.0 \text{ t}^3 \hat{j}$	1	1
5	c) – 300 W	1	1
6	b) $\frac{2MR^2}{5}$	1	1
7	c) $\frac{2}{3}$	1	1
8	b) 120 J/s	1	1
9	b) B only	1	1
10	b) T ₁ <t<sub>2<t<sub>3</t<sub></t<sub>	1	1
11	d) + 10π m/s	1	1
12	d) $y_4(x,t) = -a \sin(kx+\omega t)$	1	1
13	Option (a)	1	1
	Both Assertion and Reason are true and Reason is the correct explanation of		
	Assertion		
14	Option : (C)	1	1
	Assertion is true but Reason is false		
15	Option (a)	1	1
	Both Assertion and Reason are true and Reason is the correct explanation of		
	Assertion		
16	Option : (b)	1	1
	Both Assertion and Reason are true but Reason is not the correct explanation of		
	Assertions		
	SECTION B		
17	L.H.S. = V = $[L^{3}T^{-1}]$	1/2	
	$\mathbf{R} \mathbf{H} \mathbf{S} - \frac{\pi \rho r^4}{r^4}$		2
	ηl		
	$[M^{1}L^{-1}T^{-2}]$ $[L]^{4}$	1/2	
	$= \frac{1}{[M^{1}L^{-1}T^{-1}]} \frac{1}{[L]^{1}}$		
	$= [M^0 L^3 T^{-1}]$	1/2	
		/-	
	As LHS = RHS. dimensionally		
	The relation is correct	1/2	
18	Let after breaking, masses of two parts are $m_1 = \frac{2}{5}m$ and $m_2 = \frac{3}{5}m$	1/2	
	Acc. to law of conservation of linear momentum (a)	1/	
	m (U) = $m_1 v_1 + m_2 v_2$	1/2	2

	$\therefore \frac{2}{5} m (8\hat{\imath} + 6\hat{\jmath}) + \frac{3}{5} m \overrightarrow{v_2} = 0$	1/2	
	$16\hat{i} + 12\hat{j} + 3\overrightarrow{v_2} = 0$		
	$\overrightarrow{v_2} = (-\frac{16}{3}\hat{\iota} - 4\hat{j})$ m/s	1/2	
19	A projectile will have same horizontal range R for two angles of projection θ and $(90^{\circ} - \theta)$.	1/2	
	$R = \frac{u^2 \sin 2\theta}{1 + 1}$	1/2	
	g g		
	$t_1 = \frac{2u \sin \theta}{g}$, $t_2 \frac{2u \cos \theta}{g}$	1/2	
	$t_1 t_2 = \left(\frac{2u \sin \theta}{g}\right) \left(\frac{2u \cos \theta}{g}\right)$		
			2
	$t_1 t_2 = \frac{2u^2 \sin 2\theta}{g^2}$		2
	2R	1/2	
	$t_1 t_2 = \frac{1}{9}$		
	OK CK		
	$(\vec{A} + \vec{B})$ and $(\vec{A} - \vec{B})$ are perpendicular to each so their dot product is		
	2010	1/2	
	$\left(\vec{A} + \vec{B}\right)$. $\left(\vec{A} - \vec{B}\right) = 0$	1/2	
	$\vec{A} \cdot \vec{A} - \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{A} - \vec{B} \cdot \vec{B} = 0$	1/	
	$A^2 - \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{B} - B^2 = 0$	/2	
	$A^2 - B^2 = O$	1/2	2
	$A^{-} = B^{-}$ $\therefore A = B$		2
20	$\frac{\Delta Q}{\Delta t} = KA \frac{\Delta T}{\Delta x}$	1/2	
	As, $\frac{\Delta Q_1}{M} = \frac{\Delta Q_2}{M}$	1/	
	$\Delta t = \Delta t$	/2	
	$K_1 A_1 \frac{(T_1 - T_2)}{L} = \frac{K_2 A_2 (T_1 - T_2)}{L}$	1/2	
	$\therefore \frac{A_1}{A_2} = \frac{K_2}{K_1}$	1/2	2
21	Pressure required to blow a hemispherical bubble at its end in		
	water = $P_{\text{outside}} + \frac{2S}{R}$	1/2	
	$= 1.0 \times 10^5 + \frac{2 \times 7.30 \times 10^{-2}}{1 \times 10^{-3}}$	72	
	$= 10^5 + 14.6 \times 10^1$	1/2	2
	$= 10^{\circ} + 0.00146 \times 10^{\circ}$		
	= 1.00146 x 10°Pa	1/2	

	SECTION C		
22	 a) Node (N) is a point, where the amplitude of oscillation is zero and pressure is maximum i.e. antinode. 	1/2	1
	Antinode (A) is a point where the amplitude of oscillation is maximum and pressure is minimum, hence node.	1⁄2	Ţ
	b) Though the violin and sitar note have the same frequency, yet the overtones produced and their relative strengths are different in the two notes	1	1
	c) Solids have both, the elasticity of volume and elasticity of shape, whereas gases have only the elasticity of volume.	1	1 =03
23	a) $\omega = \frac{2\pi}{\pi}$	1/2	
	$= 2 x \frac{22}{7} x \frac{7}{44}$ = 1 rad/s	1/2	1
	 b) Since, direction of velocity changes continuously acceleration is not a constant vector. 	1	1
	c) $a = \omega^2 R$	1/2	
	= $(1)^2 x (10 \text{ cm})$ = 10 cm s ⁻²	1/2	1 = 03
24	 a) The deformation between elastic limit and fracture point for material (Q) is more as compared to material (P). Hence (Q) is more ductile. 	1	1
	b) $Y = \frac{\text{stress}}{\text{strain}}$ Slope of graph= $\frac{1}{Y}$	1/2	1
	(slope) _P < (slope) _Q ∴ Y _P >Y _Q	1/2	1
	 Material (Q) has higher tensile strength as it sustains more stress after elastic limit. 	1	=03
25	Law of areas- The radius vector drawn from the sun to a planet sweeps out equal areas in equal intervals of time, i.e., the areal velocity (area covered per unit time) of a planet around the sun is constant.		3
	Consider a planet moving in an elliptical orbit with the sun at focus S. Let \vec{r} be the position vector of the planet w.r.t the sun and \vec{F} be the gravitational force on the planet due to the sun. Torque exerted on the planet by this force about the sun is $\vec{\tau} = \vec{r} \cdot \vec{x} \cdot \vec{f} = 0$ (As $\vec{r} \cdot \vec{k} \cdot \vec{f}$ are oppositely directed)		
	But $\vec{\tau} = \frac{d\vec{L}}{dt}$		

$\therefore \frac{d\vec{L}}{dt} = 0 \text{ or } \vec{L} = \text{constant}$ Suppose the planet moves from position P to P' in time Δt . The area swept by the	
Suppose the planet moves from position P to P in time Δt . The area swept by the	
radius vector \vec{r} is $\overrightarrow{\Delta A} = \frac{1}{2}\vec{r} \times \overrightarrow{PP'}$	
But $\overrightarrow{PP'} = \overrightarrow{\Delta r} = \overrightarrow{v} \Delta t = \frac{\overrightarrow{p}}{m} \Delta t$	
$= \Delta \vec{A} = \frac{1}{2} \vec{r} \times \frac{\vec{p}}{m} \Delta t$	
$=\frac{\Delta \vec{A}}{\Delta t} = \frac{1}{2m} (\vec{r} \times \vec{p}) = \frac{\vec{L}}{2m}$	
or $\frac{\Delta A}{\Delta t}$ = constant (As \vec{l} and \vec{m} are constant)	
26 Ball A will not rise after collision.When two bodies of same mass undergo an elastic collision, their velocities are interchanged. After collision, ball A will come to rest and the ball B would move with the velocity of A.	3
T Å am	
2 cos3° 3° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2°	
Height BD = OB – OD = 2 - 2cos 30 ⁰ - 2 - 2 ($\sqrt{3}/2$) = 2 -1 73	
$= 0.27 \text{ m}$ $\frac{1}{2}$	
By law of conservation of energy $\frac{1}{2}mv^2 = mgh$	
So, $v = \sqrt{2gh} = \sqrt{2 \times 0.27 \times 10}$	
$v = \sqrt{5.4} = 2.32 \text{ m/s}$	
27 MOI of hollow cylinder $I_1 = Mr^2$	
MOI of solid cylinder. $I_2 = \frac{2}{2}Mr^2$	
For hollow sphere $\tau = I \propto \frac{1}{2}$	3
For solid sphere, $\tau = I_1 \propto_1$	
$\therefore \frac{\alpha_2}{\alpha_1} = \frac{I_1}{I_2} = \frac{Mr^2}{\frac{2}{\pi}Mr^2} = \frac{5}{2}$	
As $\omega = \omega_0 + \alpha t$ and $\omega_0 = 0$ $\therefore \frac{\omega_2}{\omega_2} = \frac{\alpha_2}{\omega_2} = \frac{5}{2}$	
$\omega_1 \alpha_1 2$ γ_2	
28 We assume perfect contact between bodies A and B and the rigid portion 1	

	(reaction) equals 200 N. There is no impending motion and no friction. The		
	action-reaction forces between A and B are also 200 N. When the partition is		
	removed, kinetic friction comes into play.		
	$[200 - (150 \times 0.15)]$		
	Acceleration of A+B= $\frac{1500}{15}$	1/	
		/2	
	$= 11.8 \text{ m/s}^2$	1/2	
	Friction on A = $0.15 \times 50 = 7.5$ N	72	
	$200 - 7.5 - F_{AB} - 5x 11.6$	1/2	
	$F_{AB} = 1.3 \times 10^{2}$ N in the direction of motion	1/2	
	OR		
	a) For $t < 0$ and $t > 6$, the position of the particle is not changing hence no		
	force is acting on the particle. For $0 < t < 6$, position of the particle changes	1/2+1/2	
	uniformly hence no force acts during this interval also.		
	b) t=0 u=0		
	After t=0, v = slope of OA = $\frac{3}{2}$ m/s	1	
	At $t = 0$.		
	Impulse = change in momentum		
	$= m(y - \mu) = 8(\frac{3}{2} - 0)$		
	= 4 kgm/s	1/2	
	$\Delta t t = 6s$	/-	
	$u = \frac{3}{2} v = 0$		
	$u = \frac{1}{6}, v = 0$		
	Impulse = m (v –u) = 8 (0 – $\frac{3}{6}$)		
	= - 4 kgm/s	1/2	
20	SECTION D (Case study)	14	4
29	$\begin{array}{c} I \\ ii \\ ii \\ h \\ romains constant \\ \end{array}$	1X4	4
	$\frac{1}{2}$		
	(III) (a) - OR (III) (a) 3:1		
	iv) b) 24 kg m ² s ²		
30	i) c) At high temperature and low pressure	1x4	4
	i) a) Ideal gas behavior		
	iii) b) $T_1 > T_2$ OR a) 8.31 J/K		
	iv) a)		
	SECTION E		
31(a)	Work done in an adiabatic change of an ideal gas from the state $(P_1V_1T_1)$ to the		
	state $(P_2V_2T_2)$.		
	$V_{2} = V_{2}$	1/	
	$VV = J_{V_1} P a V - (1)$	1/2	
	Using PV^{γ} = constant	1/_	
	$e^{V_2} dV$	/2	
	1) W = constant $\int_{V_1}^{V_2} \frac{dV}{V^{\gamma}}$		

$\begin{vmatrix} = \frac{constant}{1-\gamma} \frac{1}{V_2^{\gamma-1}} - \frac{1}{V_1^{\gamma-1}} \\ = \frac{1}{1-\gamma} \frac{P_2 V_2^{\gamma}}{V_2^{\gamma-1}} - \frac{P_1 V_1^{\gamma}}{V_1^{\gamma-1}} & (As P_1 V_1^{\gamma} = P_2 V_2^{\gamma} = constant) \\ = \frac{1}{1-\gamma} [P_2 V_2 - P_1 V_1] \\ W.D. = \frac{\mu R}{\gamma-1} (T_1 - T_2) \\ W.D. = \frac{\mu R}{\gamma-1} (T_1 - T_2) \\ T_2 V_2^{\gamma-1} = constant \\ T_2 V_2^{\gamma-1} = T_1 V_1^{\gamma-1} \\ \end{vmatrix}$		$= \operatorname{constant} \left[\frac{V^{-\gamma+1}}{1-\gamma} \right]_{V_1}^{V_2}$	1/2	
$\begin{vmatrix} 1 & \frac{1}{1-\gamma} \frac{P_2 V_2^{\gamma}}{V_2^{\gamma-1}} - \frac{P_1 V_1^{\gamma}}{V_1^{\gamma-1}} & (As P_1 V_1^{\gamma} = P_2 V_2^{\gamma} = constant) \\ = \frac{1}{1-\gamma} \left[P_2 V_2 - P_1 V_1 \right] \\ W.D. = \frac{\mu R \left(T_1 - T_2 \right)}{\gamma - 1} & 1 \end{vmatrix}$ $31(b) For adiabatic process \\ TV^{\gamma - 1} = constant \\ T_2 V_2^{\gamma - 1} = T_1 V_1^{\gamma - 1} & \gamma = 1 \end{vmatrix}$		$=\frac{constant}{1-\gamma}\frac{1}{V_2^{\gamma-1}}-\frac{1}{V_1^{\gamma-1}}$	1/2	
$ \begin{array}{c c} = \frac{1}{1-\gamma} \left[P_2 V_2 - P_1 V_1 \right] & 1 \\ \hline W.D. = \frac{\mu R \ (T_1 - T_2)}{\gamma - 1} & 1 \\ \hline 31(b) & \text{For adiabatic process} \\ (i) & T V^{\gamma - 1} = \text{constant} \\ T_2 V_2^{\gamma - 1} = T_1 V_1^{\gamma - 1} & \gamma_2 & \gamma_2 \\ \hline V_2 & V$		$=\frac{1}{1-\gamma}\frac{P_2V_2^{\gamma}}{V_2^{\gamma-1}} - \frac{P_1V_1^{\gamma}}{V_1^{\gamma-1}} \text{(As P}_1V_1^{\gamma} = P_2V_2^{\gamma} = \text{constant})$		3
W.D. = $\frac{1}{\gamma-1}$ 131(b)For adiabatic process(i) $TV^{\gamma-1}$ = constant $T_2V_2^{\gamma-1}$ = $T_1V_1^{\gamma-1}$ γ_2		$= \frac{1}{1 - \gamma} \left[P_2 V_2 - P_1 V_1 \right]$	1	
31(b) For adiabatic process (i) $TV^{\gamma-1} = \text{constant}$ $T_2V_2^{\gamma-1} = T_1V_1^{\gamma-1}$ γ_2		W.D. = $\frac{\gamma - 1}{\gamma - 1}$	Ţ	
(i) $TV^{\gamma-1} = \text{constant} \\ T_2V_2^{\gamma-1} = T_1V_1^{\gamma-1}$ γ_2	31(b)	For adiabatic process		
$T_2 V_2^{\gamma - 1} = T_1 V_1^{\gamma - 1} $	(i)	$TV^{\gamma-1} = constant$		
		$T_2 V_2^{\gamma - 1} = T_1 V_1^{\gamma - 1}$	1/2	
$\therefore T_2 = \left(\frac{V_1}{V_2}\right)^{\gamma - 1} = 300 \left(\frac{V}{2\sqrt{2}V}\right)^{\frac{5}{3} - 1}$		$\therefore T_2 = \left(\frac{V_1}{V_2}\right)^{\gamma - 1} = 300 \left(\frac{V}{2\sqrt{2}V}\right)^{\frac{5}{3} - 1}$		
1/2		1	1/2	
$= 300 \times \frac{1}{(2^{3/2})^{2/3}}$		$= 300 \times \frac{1}{(2^{3/2})^{2/3}}$	72	
				2
$=\frac{300}{K}$		$=\frac{300}{K}$ K		2
2		2		
Т ₂ = 150 К		Т ₂ = 150 К		
		2		
(ii) $\Delta U = \mu C_v dt$ for all processes $\frac{1}{2}$	(ii)	$\Delta U = \mu C_v dt$ for all processes	1/2	
$= 2 \times \frac{3}{7} \text{B} \times (150-300) \text{ J}$		$= 2 x - \frac{3}{2} R x (150-300) I$		
3+2:				3 +2 =
- 2x82x1501				5
			1/2	
= - 3735 J		= - 3735 J		
OR 1		OR	1	
31(a) Let there be n drops (small) combine to form a big drop.	31(a)	Let there be n drops (small) combine to form a big drop.		
Then, $nx^{4}\pi r^{3} = \frac{4}{\pi}R^{3}$ or $n = \frac{R^{3}}{\pi}$		Then, $n x^{4} - \pi r^{3} = -\frac{4}{3} \pi R^{3}$ or $n = \frac{R^{3}}{2}$		
Mass of history dram of water $M = \frac{4}{3} = D^3 \times 1$ (a= 1 g/as)		Mass of bigger drep of water $M = \frac{4}{r^3} = D^3 \times 1$ (a = 1 g/as)		
$\frac{1}{2}$		$\frac{1}{3} \frac{1}{2} \frac{1}$	1/2	
Energy released = S.T x decrease in surface area		Energy released = S.T x decrease in surface area		
$E = 5 \times 4 \pi (nr^{-} - K^{-})$		$E = 5 \times 4 \pi (nr^{-} - R^{-})$		
$= S \times 4 \pi \left(\frac{\pi}{r^3} r^2 - R^2 \right)$		$= S \times 4 \pi \left(\frac{\kappa}{r^3} r^2 - R^2 \right)$		
$= 4 \pi SR^3 (\frac{1}{r} - \frac{1}{R})$		= 4 π SR ³ ($\frac{1}{r} - \frac{1}{R}$)		
$= 3 \times \frac{4}{3} \pi R^3 S[\frac{R-r}{Rr}]$		$= 3 \times \frac{4}{3} \pi R^3 S \left[\frac{R-r}{Rr}\right]$	1/2	

		1	1
	= 3 MS $\left[\frac{R-r}{Rr}\right]$	1/2	
	∴ K.E. produced = E		3
	$\therefore \frac{1}{2} \text{mv}^2 = 3\text{MS}\left[\frac{R-r}{Rr}\right]$	1/2	
	$V = \sqrt{\frac{6S(R-r)}{Rr}}$		
31(b)	$V_1 = 180 \text{ km/h} = 50 \text{ m/s}$		
	$V_2 = 234 \text{ km/n} = 65 \text{m/s}$ A = 2 x 25 = 50 m ²		
	ρ = 1 kg/m ³		
	$P_1 - P_2 = \frac{1}{2} \rho \left(V_2^2 - V_1^2 \right)$	1/2	
	$=\frac{1}{2} \times 1 \times (65^2 - 50^2)$		
	\therefore Upward force = (P ₁ - P ₂) A		
	$=\frac{1}{2} \times (65^2 - 50^2) \times 50 \text{ N}$	1/2	
	As the plane is in level flight, so		
	$mg = (P_1 - P_2) A$	1/2	
	or, $m = \frac{(P_1 - P_2)A}{a}$		2
	$\frac{9}{1 \times (65^2 - 50^2) \times 50}$		
	$=\frac{1}{2 \times 9.8}$		
	$= 4.4 \times 10^3 \text{ kg}$	1/2	3 +2 = 5
32 (a)	Let the wave pulse moving from left to right (i.e. along +ve x –axis) be		
	$y_1(x,t) = r \sin(\omega t - kx)$	1/2	
	As there is a phase change of π radian on reflection at the rigid boundary, \therefore Reflected wave pulse travelling from right to left is		
	$y_2(x,t) = r \sin(\omega t + kx + \pi)$	1/_	
	$y_2(x,t) = -r \sin(\omega t + kx)$	/2	2
	According to superposition		
	principle, the resultant displacement y at time t and position x is given by $y(x, t) = y_{x}(x, t) + y_{y}(x, t)$		
	$y(x,t) - y_1(x,t) + y_2(x,t)$ $y(x,t) = r sin (\omega t - kx) - r sin (\omega t + kx)$		
	$y(x,t) = -r [sin (\omega t + kx) - sin (\omega t - kx)]$	1/2	
	Using the relation		
	$\sin C - \sin D = 2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}$		
	$y(x,t) = -2 r \cos \omega t \sin kx$	1/2	
	$y(x,t) = -(2 r \sin kx) \cos \omega t$	/2	
32(b)	At the closed end of the pipe, $x = 0$ sin $kx = sin0^{\circ} = 0$		
	\therefore y= 0 i.e. a node is formed.	1/2	
	At the open end of the pipe of length L		

	y = L an antinode is formed i.e. y = Max.		2
	When sin kL = Max = ± 1		
	$= \sin (2n - 1) \frac{\pi}{2}$	1/2	
	: $kL = (2 n - 1)\frac{\pi}{2}$ where, n = 1,2 3		
	$\frac{2\pi}{\lambda} L = (2n - 1) \frac{\pi}{2}$		
	$\therefore \lambda = \frac{4L}{(2n-1)}$	1/2	
	As $v = v\lambda$		
	$\therefore v = \frac{V}{\lambda} = \frac{(2n-1)V}{4L}$	1/2	
	\therefore For frequency of n th mode of vibration is $v_n = \frac{(2n-1)V}{4L}$		
32(c)	For first mode of vibration n=1		2
	$v_1 = \frac{1}{4L}$		1
	For second mode of vibration n =2 $(2x^2-1)V = 3V$	1/2	
	$\therefore v_2 = \frac{(2L^2 - 1)^2}{4L} = \frac{3v_1}{4L} = 3v_1$		
	For third mode of vibration $n = 3$		
	$v_3 = \frac{(2x^3 - 1)v}{4L} = \frac{3v}{4L} = 5v_1$	1/2	2+2+1
	$v_1: v_2: v_3 = 1:3:5$		= 5
	∴only odd harmonics are present in a closed end organ pipe.		
32	OR		
	Kinetic Energy of the particle at the instant t, is		
	$K = \frac{1}{2} mv^2 = \frac{1}{2} m (a\omega \cos\omega t)^2$	1⁄2	
	$K = \frac{1}{2} m\omega^2 a^2 \cos^2 \omega t$	1/2	
	$K = \frac{1}{2}m\omega^2 a^2 (1-\sin^2 \omega t)$	1⁄2	
	$K = \frac{1}{2}m\omega^2 (a^2-y^2)$	1/2	
	<u>Potential Energy</u> Work done for small displacement dy against the restoring force is dW = - Fdy = - (- ky) dy dW = kydy	1/2 1/2	
	Total work done for displacing the particle from the mean position to a position of displacement y will be		

	$W = \int_0^y ky \ dy = \frac{1}{2} ky^2$	1/2	
	This work done appears as PE.		
	$U = \frac{1}{2} ky^2 = \frac{1}{2} m\omega^2 y^2$	1/2	
	Energy ↑ Total energy		
	KE	1	
	\downarrow		5
	Displacement		
33			
	u =0, a = 10 m /s ² , s = 100 m , t = ?, v = ?		
	Using $v^2 - u^2 = 2as$ $v^2 - 0^2 - 2 \times 10 \times 100$	1/2	
	$v^2 = 2000$		5
	$v = \sqrt{2000}$		
	= 44.72 m/s	1/2	
	Using s = ut + $\frac{1}{2}$ at ²		
	$100 = 0xt + \frac{1}{2}x 10x t^{2}$	1/2	
	$100=5t^2$		
	$t^2 = \sqrt{20}$		
	$\therefore t = 4.472 s$	1/2	
	Rebound velocity = $(1 - \frac{1}{10}) \times 44.72$		
	$=\frac{9}{10} \times 44.72$		
	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
	= 40.24 m/s	1/2	
	Time taken to reach highest point		
	v= u +at	1/2	
	0 = 40.24 - 10 xt 40-24		
	$t = \frac{1}{10} = 4.024 \text{ s}$	1/2	
	∴ Total time = 4.472 + 4.024		
	= 8.496 s		
	= 8.5 s	1/2	

	V(45) Tu+72 40-24 0 40-24 0 4-47 8-5 -3t(5)	1	
33	OR		
	Let the speed of ball $1 = u_1 = 2u \text{ m/s}$ Then the speed of ball $2 = u_2 = um/s$ Let the height covered by ball 1 before coming to rest = h_1 Let the height covered by ball 2 before coming to rest = h_2		
	At the top their velocities becomes zero		
	$u^2 = 2gh \implies h = \frac{u^2}{2g} \implies h_1 = \frac{u_1^2}{2g}$		
	$h_1 = \frac{4u^2}{2a}$		
	and $h_2 = \frac{u^2}{2a}$	1/2 + 1/2	
	2 <i>y</i>		
	A.T.Q $h_1 - h_2 = 15 m$ (given)	1/2	
	$\frac{4u^2}{2g} - \frac{u^2}{2g} = 15$		
	$\frac{u^2}{2g}$ [4-1] = 15		
	\Rightarrow u ² = $\frac{15 \times 2 \times 10}{2}$	1	
	ن ٢	1/2	
	$\Rightarrow u^2 = 100$ u = 10 m/s		
	\therefore For ball 1, $v_1 = u_1 + gt$		
	$0 = 20 - 10 t_1$	1/	
	t ₁ = 2s	72	
	For ball 2, $v_2 = u2 + gt_2$		
	$0 = 10-10 t_2$ $t_2 = 1 s_1$		
	\therefore Velocities of ball 1 and 2 are 20 m/s and 10m/s respectively.	1/2	
	Time interval between two balls		
	$= t_1 - t_2$		
	= 1 second	1	5