DAYANAND ANGLO VEDIC PUBLIC SCHOOL, AIROLI FIRST TERM EXAMINATION (2024-25) SUBJECT : MATHEMATICS (SAMPLE PAPER)

Class: X Duration: 3 Hrs.

Maximum Marks: 80

General Instructions:

- 1. This Question Paper has 5 Sections A E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 2 marks each.
- 4. Section C has 6 questions carrying 3 marks each.
- 5. Section D has 4 questions carrying 5 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1,1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Questions of 5 marks,2 Questions of 3 marks and 2 Questions of 2 marks has been provided.
- 8. An internal choice has been provided in the 2 marks questions of Section E.
- 9. Draw neat figures wherever required.
- 10. Take $\pi = 22/7$ wherever required if not stated.

				SECTIC	DN A			
	Section A consist							
1.	The LCM of smallest two-digit composite number and smallest composite number is:							(1)
	(a) 12 (b	o). 4	(c) 20	(d) 44				
2.	The number of po			es as -2 and	5 is:			(1)
	(a) 1 (t	b) 2	(c) 3	(d) more	than 3			
3.	Consider the freq	uency distri	bution.	-	-			(1)
	Class	0-5	6 - 11	12 - 17	18 - 23	24 - 29		
	Frequency	13	10	15	8	11		
	The upper limit o (a) 17 (b		ass is (c) 18	(d) 18.5	5			
4.								(1)
5.	If -4 is a zero of the quadratic polynomial $x^2 - x - (2k + 2)$. Find the value of k. (a) 7 (b) 8 (c) 9 (d) 1							(1)
6.	The pair of equations $x + 2y-5 = 0$ and $-4x-8y+20=0$ have: (a) Unique solution (b) Exactly two solutions (c) Infinitely many solutions (d) No solution						(1)	
7.	If the lines $3x + 2ky - 2 = 0$ and $2x + 5y + 1 = 0$ are parallel, then what is the value of k? (a) $4/15$ (b) $15/4$ (c) $4/5$ (d) $5/4$							(1)
8.	If $\frac{1}{2}$ is a root of the quadratic equation $x^2 + kx - 5/4 = 0$ then the value of the k is:(a) 2(b) -2(c) 3(d) -3Equation $(x + 1)^2 - x^2 = 0$ has real roots							
9.				eal roots (d)				(1)

10.	In the given fig	ure DE BC	, then x equals:			A		(1)	
	a) 6 cm (b) 8 cm $D_{4 \text{ cm}}$								
	(c) 12 cm	(d) 10 c	em		3 cm	4 cm			
					в	x	c		
11.	Δ ABC and Δ D					nen the value of	of EF is	(1)	
	(a) 15 cm (b) 16 cm (c) 18 cm (d) 20 cm								
12.									
	(a) $\frac{b}{a}$ (1	b) $\frac{b}{\sqrt{b^2 - a^2}}$	(c) $\frac{\sqrt{b}}{\sqrt{b}}$	$\frac{a^2-a^2}{b}$	(d) $\frac{a}{\sqrt{b^2-a}}$	$\frac{1}{a^2}$			
13.									
		-							
14.	(a) -1 A pole of 6m h	$\frac{(b) 0}{b}$	$\frac{(c)}{c}$	1 and then au	$\frac{(d)}{n^2}$	3/2		(1)	
17.	A pole of om n (a) 60°	(b) 45°		30°	n s elevation is (d) 9			(1)	
15.	If 4 tan β = 3, the		$\frac{\partial s\beta}{\partial s \sigma \theta} =$					(1)	
		-	-	12	(1) 2/				
16.	(a) 0 For the following	(b) 1/3 ng distributio	$\frac{(c) 2}{n}$	/3	(d) $\frac{3}{4}$			(1)	
		<i>8</i>	, T	T				(-)	
	Class	0-5	5-10	10-15	15-20	20-25			
	Frequency	10	15	12	20	9			
	The sum of low	ver limits of n	nedian class an	d modal cla	ss is:				
	(a) 15	(b) 25	(c) 3()	(d) 35				
17.	The		he frequency o	btained by a	dding the freq	uencies of all t	he classes	(1)	
	preceding the g (a) Class mark		height (c) Av	verage frequ	ency (d) Cu	umulative frequ	uency		
18.			the numbers	1, 2, 3 and a	number y is se	elected from th	e numbers 1, 4, 9.	(1)	
	Then P (xy < 9) (a) $\frac{3}{9}$) 18 (b) $\frac{4}{9}$		(c) $\frac{1}{9}$	(d) 5				
	$\left(u\right)\frac{1}{9}$	$(0)\frac{1}{9}$		$(0) \frac{1}{9}$	$(u) = \frac{1}{9}$				
	DIRECTION:	-			tement of asse	rtion (A) is fol	lowed by a		
	statement of Re (A) Both assert	. ,		-	on (\mathbf{R}) is the c	orrect explanat	tion of assertion		
	(A) Both assert (A)		eason (R) are t	rue and reas		oneet explaina	non or assertion		
	(B) Both assert assertion (A		eason (R) are t	rue and reas	on (R) is not th	ne correct expl	anation of		
	(C) Assertion (A	,	reason (R) is f	alse.					
	(D) Assertion (A) is false bu	t reason (R) is	true.					
19.	Assertion(A) :						$\mathbf{x}^2 \perp \mathbf{b}\mathbf{x} \perp \mathbf{c} = 0$ are	(1)	
	Reasons(R): If discriminant $D = b^2 - 4ac < 0$ then the roots of quadratic equation $ax^2 + bx + c = 0$ are imaginary.								
	/ A		•, •	• . •					
20.	(Assertion): 6 ⁿ (Reason): Any					e form $2^m \times 5^r$, where m, n are	(1)	
	natural number			,			,, ii ui e		

				SECTIO	NN P					
	Section B con	sists of 5 au	estions of 2 m		JIN D					
21.	Section B consists of 5 questions of 2 marks each. (a) Find a quadratic polynomial whose product and the sum of zeroes are ¹ / ₄ and -1 respectively. OR									
	(b) If one zero of the polynomial $(a^2 + 9) x^2 + 13 x + 6a$ is reciprocal of the other, find the value of a.									
22.										
	3x + 2y = 8; 6x - 4y = 9 Find the value of the p so that the quadratic equations $px(x - 3) + 9 = 0$ has two equal roots.									
23.		-	-	OR		-	ots.	(2)		
24.			$\frac{\text{t the quadratic}}{\text{A}}$ (sec A + ta		$-4\mathbf{k}\mathbf{x} + \mathbf{k} = 0$	has equal roots.		(2)		
25.	Evaluate the fo	ollowing: <u>sec</u>	$30^{\circ} + cosec 30^{\circ}$					(2)		
				SECTIO	DN C					
	Section C con	sists of 6 qu	estions of 3 m	arks each.						
26.	Prove $\sqrt{5}$ is a	n irrational i	number.					(3)		
					OR					
	Three bulbs re three flash tog	. 0	•			seconds and 110 seconds and 110 seconds and 110 seconds ther again?	onds. All			
27.	If α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bc + c$, then find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$.									
28.	Draw the grap	h of the equa	ations x-y+1=0	and $3x+2y$	-12=0.Using th	his graph find the valu	ues of x and y	(3)		
	Draw the graph of the equations $x-y+1=0$ and $3x+2y-12=0$. Using this graph find the values of x and y which satisfy both the equations.									
29.	 Legs (sides other than the hypotenuse) of a right triangle are of lengths 16cm and 8 cm. Find the length of the side of the largest square that can be inscribed in the triangle. 									
	OR In given figure, A, B and C are points on OP, OQ and OR respectively such that AB PQ and BC QR. Show that AC PR									
30.	If the mean of	the followin	g distribution	is 54, find th	ne missing free	quency x :		(3)		
	Class	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100				
	Frequency	16	14	24	26	X				
31.	In a single thre	In a single throw of two dice, find the probability of								
51.	(a) A doublet (b)A number less than 3 on each die (c) An odd number as a sum									
	Section D con	sists of 4 qu	estions of 5 m	SECTIC arks each.	DN D					
32.						a in a row, there would nd the number of stud		(5)		

33.	OB is perpendicular bisector of the line segment DE. FA is perpendicular to OB and FE intersects OB at point C.										(5)
	Prove that $\frac{1}{OA} + \frac{1}{OB} = \frac{1}{OC}$.										
34.	Prove that: $\frac{tan\theta + Sec\theta - 1}{tan\theta - Sec\theta + 1} = \frac{Cos\theta}{1 - Sin\theta}$ OR If $\sin \theta + \cos \theta = m$ and $\sec \theta + \csc \theta = n$ then show that $n (m^2 - 1) = 2m$.									(5)	
35.	Find the mean,	median a	and mode	of the follo	wing data.						(5)
			1		-	1	-			1	(0)
	Class	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100	0 100) - 120	120 - 140	_	
	Frequency	6	8	10	12	6		5	3		
										-	
					OR						
	In a retail marked number of many						ooxes. T	hese box	tes contained	d varying	
	No. of Mango	es 5	50 - 52	53 - 55	56 - :	58 59	9 - 61	62 -	64		
	No. of boxes		15	110	135	5	115	25			
	Find the mean and median number of mangoes kept in a packing box.										
					SECTION	E					
	Case study bas	ed quest	tions are o								
36.	Case Study 1: A vegetable seller has 420 potatoes and 130 tomatoes. He wants to stack them in such a way that each stack has same summer and they take up the least area of the tray. Image: Case Study 1: Image										
	Based on the ab	ove info	rmation of	f a vegetab	le shop, an	swer the f	followin	g questi	ons		
	(i) What is the r (ii) What is the (iii) Find the pro-	minimur	n number	of stacks in	n which ve	getables c	an be p	laced?			(1) (1)
	(iii)What is the	total nur	nber of rov	OR ws in whic	h they can	be placed	?				(2)

37.	Coso Study 2	
57.	<u>Case Study 2-</u> India is one of the largest importers of crude oil. Oil companies produce crude oil in barrels. Suppose the maximum oil produced by a company is 300 barrels and profit made from sale of these barrels is given by the function $P(x) = -10x^2 + 3500x - 66000$, where $P(x)$ is profit in rupees and x is the number of barrels produced and sold.	
	Based on the above information, answer the following questions:	
	(i) When no barrel is produced, then find the profit or loss.	(1) (1)
	(ii) How many barrels should be produced by the company for no profit or no loss?(iii) If 100 barrels are produced, then find the profit or loss.	
	OR	(2)
	(iii) If 400 barrels are produced, then find the profit or loss.	
38.	Case Study 3- Plan Strategy Tower cranes are a common fixture at any major construction site. They're pretty hard to miss – they often rise hundreds of feet into the air, and can reach out just as far. The construction crew uses the tower crane to lift steel, concrete, large tools like acetylene torches and generators, and a wide variety of other building materials. A crane stands on a level ground. It is represented by a tower AB, of height 24 m and a jib BR. The jib is of length 16 m and can rotate in a vertical plane about B. A vertical cable, RS, carries a load S. The diagram shows current position of the jib, cable and load. Based on the above information answers the following questions. 16 m 16 m 16 m 16 m 17 m 16 m 17 m 18 m 24 m 19 m 19 m 10	
	(i) Find is the distance BS ?	(1)
	(ii) What is the measure of the $\angle BRS$?	(1)
	(iii) What is the angle that the jib, BR, makes with the horizontal?	
	OR	
	(iii) What is the angle between BR and SR?	(2)