Marking Scheme Sample Question Paper Chemistry XI 2024-25

Q. No	Sub part	Value Points	Step wise mar ks	Total Marks
1		(C)2	1	1
2		(C) The wavelength of the incident radiation required for ejection of electrons is the same for all the metals.	1	1
3		(D) 496, 737, 577 , 786	1	1
4		(D) NH ₃ > NF ₃ > BF ₃	1	1
5		(D) ΔH is positive and ΔS is negative	1	1
6		(B) I ⁻)1	1
7		(B) [Sn ⁴⁺] [S ²⁻] ²	1	1
8		(D) P ₄	1	1
9		(B) 2- Methylpropene	1	1
10		(D) -315 kJ	1	1
11		(C) 3	1	1
12		(B) Steam Distillation	1	1

13	(B) Both A and R are true but R is not the correct	1	1
	explanation of A		
14	(A) Both A and R are true and R is the correct expla	nation 1	1
	of A		
15	(A) Both A and R are true and R is the correct expla of A	nation 1	1
16	(D) A is false but R is true	1	1
17	$\lambda = \frac{h}{mv} = \frac{6.626 x 10^{-34} Js}{9.1 x 10^{-31} Kg x 2.19 x 10^6 m s^{-1}}$	1	
	= 0.332 x 10 ⁻⁹ m = 0.332 nm	1	2
18	(a) S has more negative first electron gain enthalpy. The size of O is much smaller than that of sulphur. As a electron electron repulsions in the smaller 2p subs oxygen are comparatively larger than those present bigger 3p-subshell of sulphur. Therefore, S has a tendency to accept an additional election than oxygen.	result, 1 hell of in the higher	
	(b) C has more negative electron gain enthalpy than Si This is because C-atom has smaller size than Si atom a electron - electron repulsions in carbon and silicon unlike oxygen and sulphur are not very large because t contain only four electrons in the outermost shell.	. 1 and hey	2
19	(a) Molecular orbital electronic configuration of Be ₂ = $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2$ Bond order =1/2(4-4) =0	1	
	(b) p- nitrophenol has a higher boiling point due to the presence of intermolecular hydrogen bond and that's with not steam volatile.	he hy it is	2

20.	overall reaction:		
	$XeO_6^{4-} + F^- \longrightarrow XeO_3 + F_2$ (Acidic medium)		
	$X_{P} O_{C}^{4-} + 2e_{T} \longrightarrow X_{P} O_{2}$ (Reduction)	1⁄2	
	XeOb +ze- XeO3 (Reduction)	1⁄2	
	$2F^{-} \rightarrow F_2 + 2e^{-}$ (Oxidation)		
	$XeO_6^{4-} + 2F^- \longrightarrow XeO_3 + F_2$	1	
	Acidic medium:		
	$XeO_6^{4-} + 2F^- + 6H + \longrightarrow XeO_3 + F_2 + 3H2O$		
	OR Overall reaction :-		
	$Cl_2(l) \rightarrow Cl^-(aq) + ClO^-(aq)$	1/2	
	Half cell reaction at anode :-		
	$Cl_2(l) + 2H_2O(l) + 4OH^-(aq) \rightarrow 2ClO^-(aq) + 4H_2O(l) + 2e^-$	1⁄2	
	Half cell reaction at cathode :-		
	$Cl_2(l) + 2e^- \rightarrow 2Cl^-(aq)$	1	
	Adding above two half cell reaction, we get :-		
	$Cl_2(l) + 2OH^-(aq) \rightarrow ClO^-(aq) + 4H_2O(l) + Cl^-(aq)$		2

21		Carbanion A is more stable Reason:- B is destabilized by electron withdrawing effect of - NO ₂ .	1	2
22.	(a) (b)	$\begin{array}{l} 2H_2+O_2\rightarrow 2\ H_2O\\ According to the above equation\\ 2\ vol.\ Of\ H_2\ requires\ 1\ vol\ of\ O_2\\ Therefore,\\ 16\ vol\ of\ H_2\ will\ require\ 8\ vol\ of\ O_2\\ Amount\ of\ O_2\ in\ the\ reaction\ mixture\ is\ 6\ vol\ ,\ hence\ O_2\\ is\ the\ limiting\ reagent\\ 1\ vol\ of\ O_2\ produces\ 2\ vol\ of\ H_2O\\ Hence,\ 6\ vol\ of\ O_2\ will\ produce\ 12\ vol\ of\ H_2O\\ Law\ of\ multiple\ proportions. \end{array}$	1 1 1	3
23.		(i) Al ³⁺ < Mg ²⁺ < Li ⁺ < K ⁺	1	
		(ii) Formation of CI ⁻ from CI (g) is exothermic because its first electron gain enthalpy is negative. CI (g) + e ⁻ \rightarrow CI ⁻ (g) Δ H = - ve Formation of O ²⁻ involves two processes : O (g) + e ⁻ \rightarrow O ⁻ Δ H ₁ = -ve O ⁻ (g) + e ⁻ \rightarrow O ²⁻ Δ H ₂ = +ve Δ H ₂ > Δ H ₁ So, Δ H For the formation of O ²⁻ (g) from O(g) gas is positive.	2	3

	$Molarity = \frac{no. of moles}{Volume of solution in litre}$ $Volume = \frac{3.68}{0.1} = 36.8 L$	es	1	
26	$HC \equiv CH + 2H_2 \xrightarrow{(Raney)} H - Ethyne Dihydrogen$ $\Delta_{reaction}H = \Sigma Bond Enthalpy(r) - \Sigma Bond$	H H C - C - H H H Ethane d Enthalpy (p)	1/2	3
	Bond Enthalpies of Bond Enthalpies of Entry Pro-	ond hthalpies of oducts		
	$C = C = 600 \text{ KJ mol}^{-1}$ $2xC-H = 2x410 = 820 \text{ KJ mol}^{-1}$ $2xH-H = 2x400 = 800 \text{ KJ mol}^{-1}$ $Total \text{ Bond Enthalpy of Reactants} = 2220 \text{ KJ mol}^{-1}$ $KJ \text{ m}$	$F = 350 \text{ KJ mol}^{2}$ F = 6x410 = 0 KJ mol ⁻¹ al Bond Enthalpy Reactants = 2810 mol ⁻¹	1 + 1	
	Δ_{reaction} H = 2220 - 2810 = - 590 KJ mol ⁻¹		1⁄2	
	OR As work is being done against external p	pressure the process		
26	is irreversible hence, $W = -P_{ext} \Delta V$ = 2.5 (6 - 4) = -5.0 atm-L ($W = -5.0 \times 101.3 = -506.5 \text{ J}$ For isothermal expansion $\Delta U = 0$ So, q = -W = 506.5J	(1atm-L = 101.3J)	1/2 1/2 1/2	3
	This heat is used to heat 1 mole of water So, $q = m c \Delta T$	r	1/2 1/2	

	506.5 = 18 x 4.2 x ΔT Δ T = 6.725 °C Final Temperature = Δ T + Initial Temperature Final Temperature = 20 + 6.725 = 26.725 °C	1/2	
27.	Element 'X' is Sulphur	1	3
	The white ppt formed is of BaSO4 which has a molar mass =233		
	g/mol	17	
	$n = \frac{given \ mass}{molar \ mass} = \frac{0.5}{233} = 0.00215 \ moles$	1/2	
	Since 1 mole of barium sulphate contains 1 mole of sulphur ,		
	the number of moles of sulfur is also 0.00215 mol.		
	The mass of sulfur is= number of moles x molar mass	1/2	
	= 0.00215 mol x 32 g/mol		
	= 0.0688 g		
	The percentage of sulfur in the organic compound is:		
	$\%S = \frac{mass of sulphur}{mass of organic compound} x 100 = \frac{0.0688}{0.16} x 100 = 42.5 \%$	1	

28.	$2CH_{3}COONa + 2H_{2}O \xrightarrow{electrolysis} H_{3}C-CH_{3} 2 NaOH + H_{2}$ $C_{6}H_{6} + (CH_{3})_{2}CHCl \xrightarrow{anhydrous AlCl3} \xrightarrow{HC \leftarrow CH_{3}} \downarrow \downarrow \downarrow \downarrow \downarrow$	1	
	C_2H_2 Red hot Fe tube/873 K C_6H_6	1	3
29.	 Based on VSEPR (valence shell electron pair repulsion theory), the four bond pairs of electrons on nitrogen will repel each other. As a result, they will be pushed apart giving the ammonium ion-molecule a tetrahedral shape. Therefore, it has tetrahedral electron geometry. The central atom in the Sulphur tetrafluoride molecule has 5 electron pairs. There are 4 bond pairs and one lone pair. It has a trigonal bipyramidal geometry (or structure). The lone pair is in the equatorial plane giving an overall see-saw shape. 	1	4
	3. The atomic number of phosphorus is 15. The electronic configuration of phosphorus is:	2	

(b)	$\begin{array}{llllllllllllllllllllllllllllllllllll$		1⁄2	
	NaOH \rightarrow Na ⁺ + OH ⁻ 0.1M, 100 ml 10 millimoles 10 millimole	29	1⁄2	
	Number of millimoles of H ⁺ and OH ⁻ neutralize mixture = 10 millimoles	d in the		
	Number of millimoles of H^+ ion left unreacted in mixture = 20 - 10 = 10 millimoles	the	1⁄2	
	[H ⁺] in the mixture = millimoles of H ⁺ ion / total of mixture 10 / 200 = 0.05 M pH = -log[H ⁺]	volume		
	$pH = -\log(5x10^{-2})$ pH = 1.3010		1⁄2	
(c)	Common ion effect - It is a phenomenon in whi degree of dissociation of any weak electrolyte i suppressed by addition of a small amount of st electrolyte containing a common ion.	ch the s rong	1	
(a)	OR			
	Buffer solution - It is a water solvent-based solution which consists of a mixture containing a weak a and the conjugate base of the weak acid or a w base and the conjugate acid of the weak base. resist a change in pH upon dilution or upon the addition of a small amount of acid/alkali to then	ution acid veak They n.	1	
(b)	$\Lambda G^0 = -2.303 \text{ R} \text{ T} \log K_{\circ}$			
<i>,</i> ,	$\Delta G^{0} = -2.303 \times 8.314 \times 300 \log(2 \times 10^{13})$ $\Delta G^{0} = -7.64 \times 10^{4} \text{ J mol}^{-1}$		1 ½ ½	
(c)	$HF < H_2O < NH_3$ (Increasing order of pH) Reason:- Fluorine, oxygen and nitrogen belon row of the periodic table. H-A bond priority deciding factor for determining the acidic stre	g to the same becomes the ength. As the	1	

	electronegativity of A increases, the strength of acid also increases and pH decreases.	1	

b)		1	
	1. Formation of free radicals:		
	Benzoyi peroxide decomposes upon heating to form benzoyioxyi radicals:		
	$(C_6H_5CO)_2O_2 ightarrow 2C_6H_5CO\cdot$		
	$C_6H_5\cdot +HBr ightarrow C_6H_6+Br\cdot$		
	2.Addition of bromine radical to but-1-ene:		
	The bromine radical adds to the double bond of but-1-ene, forming a secondary radical (because the secondary radical is more stable than the primary radical):	1	
	$CH_2 = CH - CH_2 - CH_3 + Br \cdot ightarrow CH_2 \cdot - CHBr - CH_2 - CH_3$		
	3. Formation of the final product:		
	The secondary radical reacts with another molecule of HBr to form 1-	1	
	bromobutane and regenerate the bromine radical, allowing the chain		
	reaction to continue:		
	$CH2 \cdot - CHBr - CH2 - CH3 + HBr \rightarrow CH3 - CHBr - CH2$		5
	-CH3+Br		
		1	
		1	